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ABSTRACT

We describe a method for measuring the integrated Comptonization (YSZ) of clusters of galaxies
from measurements of the Sunyaev-Zel’dovich (SZ) effect in multiple frequency bands and use this
method to characterize a sample of galaxy clusters detected in South Pole Telescope (SPT) data. We
test this method on simulated cluster observations and verify that it can accurately recover cluster
parameters with negligible bias. In realistic simulations of an SPT-like survey, with realizations
of cosmic microwave background anisotropy, point sources, and atmosphere and instrumental noise
at typical SPT-SZ survey levels, we find that YSZ is most accurately determined in an aperture
comparable to the SPT beam size. We demonstrate the utility of this method to measure YSZ and to
constrain mass scaling relations using X-ray mass estimates for a sample of 18 galaxy clusters from the
SPT-SZ survey. Measuring YSZ within a 0.75′ radius aperture, we find an intrinsic log-normal scatter
of 21± 11% in YSZ at a fixed mass. Measuring YSZ within a 0.3 Mpc projected radius (equivalent to
0.75′ at the survey median redshift z = 0.6), we find a scatter of 26 ± 9%. Prior to this study, the
SPT observable found to have the lowest scatter with mass was cluster detection significance. We
demonstrate, from both simulations and SPT observed clusters, that YSZ measured within an aperture
comparable to the SPT beam size is equivalent, in terms of scatter with cluster mass, to SPT cluster
detection significance.
Subject headings: methods: data analysis — galaxies: clusters — X-rays: galaxies: clusters
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1. INTRODUCTION

Galaxy clusters are the largest gravitationally col-
lapsed systems in the observed universe, and their abun-
dance as a function of mass and redshift is a sensi-
tive probe of the growth of structure in the universe.
The ability to accurately and precisely estimate cluster
masses is essential for using them to constrain cosmo-
logical parameters. Typically this is done through clus-
ter observables, which do not directly measure cluster
mass, but can be related to it through scaling relations
(Vikhlinin et al. 2009b; Rozo et al. 2010; Mantz et al.
2010; Benson et al. 2013). The Sunyaev-Zel’dovich (SZ)
effect (Sunyaev & Zel’dovich 1972), is caused by the
inverse Compton scattering of cosmic microwave back-
ground (CMB) photons off of hot intra-cluster gas. It is
a measure of the line-of-sight integral of the cluster pres-
sure and is expected to be a low scatter proxy for cluster
mass (Carlstrom et al. 2002; Kravtsov et al. 2006). In
particular, the integrated Comptonization of a cluster,
YSZ, is expected to have a low intrinsic scatter with clus-
ter mass and to be relatively insensitive to cluster astro-
physics (Barbosa et al. 1996; Holder & Carlstrom 2001;
Motl et al. 2005; Nagai et al. 2007; Fabjan et al. 2011).

However, for SZ observations where the cluster size is
on the order of the instrument beam size or smaller, there
is typically a degeneracy in the constraints on the ampli-
tude and shape of the assumed cluster profile (e.g., Ben-
son et al. 2004; Planck Collaboration et al. 2011, 2013).
In this work, we present a Markov-Chain Monte Carlo
(MCMC) analysis method for analyzing observations of
the SZ effect, which measures YSZ while marginalizing
other SZ model parameters. A feature of the MCMC
method is that the YSZ estimates it produces are well
constrained even for clusters with relatively small radii
on the sky.

We apply this MCMC method to simulated and real
observations from the South Pole Telescope (SPT). Pre-
vious analyses of clusters observed in the SPT-SZ survey
used the cluster detection significance, ξ, as a proxy for
cluster mass (Vanderlinde et al. 2010; Andersson et al.
2011; Benson et al. 2013; Reichardt et al. 2013). Here we
show that YSZ integrated over a fixed angular aperture
near the SPT beam size and ξ have comparable frac-
tional scatter in their respective mass scaling relations.
YSZ, however, is more easily compared to cluster param-
eters derived from other measurements.

2. CLUSTER SAMPLE AND OBSERVATIONS

2.1. SZ Observations
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The South Pole Telescope is a 10-meter diameter off-
axis Gregorian telescope with a 1 deg2 field of view, de-
signed to operate at millimeter and submillimeter wave-
lengths (Carlstrom et al. 2011). In 2007-2011, the SPT
surveyed 2500 deg2 in three frequency bands centered at
95, 150, and 220 GHz. This survey is referred to as the
SPT-SZ survey. The cluster sample used in this work
is drawn from the two fields (∼100 deg2 each) observed
with the SPT in 2008, one centered at right ascension
(RA) 5h30m, declination (Dec) −55◦ (J2000), and one at
RA 23h30m, Dec −55◦. A nearly identical cluster sam-
ple was used in Vanderlinde et al. (2010, hereafter V10),
Andersson et al. (2011, hereafter A11), and Benson et al.
(2013, hereafter B13).

Observing procedures, data processing, and detection
algorithms for these clusters are described in detail in
V10 and Staniszewski et al. (2009), and are summarized
here. Details of the data processing pipeline are also
described in Schaffer et al. (2011).

Each field was observed by scanning the telescope back
and forth in azimuth at 0.25◦/s, and then stepping in el-
evation and repeating until the entire field was covered.
This process covers a 100 deg2 field in ∼2 hours. Field
scans were repeated several hundred times until the noise
in the co-added maps reached a completion depth of 18
µK-arcmin for 150 GHz. (See Staniszewski et al. (2009),
V10, or Williamson et al. (2011) for a description of field
depth measurements.) The timestreams of the individual
detectors were filtered to remove sky signal that was spa-
tially correlated across the focal plane and long timescale
detector drift. The combination of these filters effec-
tively removes signals with angular scales larger than
∼0.5◦. Data from individual detectors were combined
using inverse-variance weighting, and the resulting maps
were calibrated by comparison to the WMAP 5-year
CMB temperature anisotropy power spectrum (Lueker
et al. 2010).

2.2. Cluster Detection

Clusters are identified in the SPT maps using a
matched filter (MF) (Haehnelt & Tegmark 1996; Her-
ranz et al. 2002a,b; Melin et al. 2006). Specifics on this
procedure can be found in Staniszewski et al. (2009)
and V10 for single frequency cluster detection, and in
Williamson et al. (2011) and Reichardt et al. (2013) for
multi-frequency detection. To locate clusters, the maps
are multiplied in Fourier space with a filter matched to
the expected spatial signal-to-noise profile of galaxy clus-
ters. The matched filter, ψ, is given by:

ψ(kx, ky) =
B(kx, ky)S(|~k|)

B(kx, ky)2Nastro(|~k|) +Nterr(kx, ky)
, (1)

where B is the instrument response after timestream fil-
tering, S is the source template, and the noise has been
divided into astrophysical (Nastro), and terrestrial (Nterr)
components. Nastro includes power from primary and
lensed CMB anisotropies, an SZ background from faint
undetected clusters, and millimeter-wave emitting point
sources. The noise power spectrum Nterr includes atmo-
spheric and instrumental noise, estimated from jackknife
maps. The source template is a two dimensional projec-
tion of an isothermal β-model, with β set to 1 (Cavaliere
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& Fusco-Femiano 1976):

∆T = ∆T0(1 + θ2/θ2
c )−1, (2)

where the central SZ temperature decrement ∆T0 and
the core radius θc are free parameters.

Clusters are detected using a (negative) peak detec-
tion algorithm similar to SExtractor (Bertin & Arnouts
1996). The significance of a detection, ξ, is defined
to be the highest signal-to-noise (S/N) ratio across all
θc. In our analysis we use the unbiased significance,
ζ =

√
〈ξ〉2 − 3, where 〈ξ〉 is the average detection signif-

icance of a cluster across many noise realizations (V10).

2.3. Optical and X-ray Observations

The optical and X-ray observations for the clusters
used in this work have previously been described in A11
and B13, which we briefly describe here. All eighteen
clusters have redshift measurements, fifteen of which are
spectroscopic, and fourteen of the clusters have X-ray
measurements.

Optical griz imaging and photometric redshifts for
these clusters were obtained from the Blanco Cosmology
Survey (Desai et al. 2012), and from pointed observa-
tions using the Magellan telescopes (High et al. 2010).
Of the fifteen clusters with spectroscopic redshifts, eight
were obtained by the Low Dispersion Survey Spectro-
graph (LDSS3) on the Magellan Clay 6.5-m telescope
(High et al. 2010), and one by the Inamori Magellan
Areal Camera and Spectrograph (IMACS) on the Mag-
ellan Baade 6.5-m telescope (Brodwin et al. 2010). The
final six cluster redshifts were measured with IMACS and
GMOS on Gemini South (Ruel et al. 2013). X-ray follow-
up observations were performed with Chandra ACIS-I
and XMM-Newton EPIC (A11, B13).

3. MCMC ANALYSIS METHODS

The application of MCMC methods to the detection
and characterization of compact astrophysical sources in
noisy backgrounds was proposed by Hobson & McLach-
lan (2003), and several experiments have used MCMC
methods for parametrizing SZ signals from galaxy clus-
ters. Bonamente et al. (2004), Bonamente et al. (2006),
and LaRoque et al. (2006) used MCMC methods to an-
alyze SZ data from BIMA and OVRO, in conjunction
with X-ray data from Chandra, and fit β-model profiles
to galaxy clusters. Muchovej et al. (2007), Culverhouse
et al. (2010), and Marrone et al. (2009) parameterized
SZA clusters, and Halverson et al. (2009) parameterized
the Bullet Cluster using APEX-SZ data, all using the β-
model. Culverhouse et al. (2010), Marrone et al. (2009),
and Marrone et al. (2012) additionally estimated cluster
YSZ values. Here we estimate galaxy cluster YSZ values
and YSZ-M scaling relations in addition to estimating
β-model parameters.

3.1. Posterior Distribution for a Compact Source

We use a Metropolis-Hastings algorithm implementa-
tion of the Markov-Chain Monte Carlo method for pa-
rameter estimation. For the case of a compact object
with source template S(H) in a two dimensional astro-
nomical dataset D with Gaussian noise, the likelihood
has the form:

P(D|H) =
exp(− 1

2 [D − S(H)]C−1[D − S(H)]∗)

(2π)Npix/2|C|1/2
, (3)

where C is the noise covariance matrix for the dataset
D, and Npix is the number of pixels in D (Hobson &
McLachlan 2003). In this method, C is composed of the
combined Nastro and Nterr noise terms in the matched
filter ψ (equation 1).

We are interested in parametrizing galaxy clusters us-
ing the SZ effect, which is the spectral distortion they
produce in the blackbody CMB spectrum. At two of
the SPT’s observing frequencies (95 and 150 GHz) this
distortion is manifested as a decrement in CMB power,
while the net change in CMB power at 220 GHz is neg-
ligible.

Equation 3 is easily generalizable to the case of
astronomical images in multiple frequency bands, where
the unnormalized log likelihood may be calculated in
the Fourier domain as

Log
(
P(D|H)

)
=

−1

2

∑
k̄,νi,νj

(
D̃νi(k̄)− s̃Hνi(k̄)

)(
D̃νj (k̄)− s̃Hνj (k̄)

)∗
Nνiνj (k̄)

, (4)

where D̃νi(k̄) is the Fourier transform of the map for fre-
quency νi, s̃

H
νi is the frequency dependent Fourier trans-

form of the cluster model for parameter set H, and
Nνiνj (k̄) is the frequency dependent covariance matrix

for the νi and νj frequency maps. Here Nνiνj (k̄) is sim-
ply the multiband extension of the covariance matrix C
in equation 3.

3.2. Implementation

Our MCMC is modeled after the generic Metropolis-
Hastings method described in Hobson & McLachlan
(2003), and is implemented in MATLAB 1.

In this work, we use the MCMC method for cluster
parametrization, not detection. Our testing found that it
was more computationally costly and not more effective
at cluster detection than the MF method. Throughout
this work, our MCMC is run over a relatively small area
of sky (512 pixels × 512 pixels, or ∼2◦× 2◦) centered on
a cluster which has already been identified.

Cluster parameter recovery is tested in single and
multi-frequency simulations below (§5), but we use only
150 GHz when investigating scaling relations (for ob-
served and simulated clusters) to match the SPT clus-
ter analysis in B13, from which our sample is derived.
We use the β-model source template given in equation 2.
Montroy et al. (2013, in preparation) demonstrate, using
simulations and methods similar to those described in
§5, that YSZ is recovered accurately with a β-model for
either β-model or Arnaud profile (Arnaud et al. 2010)
input clusters.

Clusters are characterized by four parameters: their
location on the sky in RA and Dec, the magnitude of
the SZ temperature decrement ∆T0, and the core radius
θc. We apply priors in the form of uniform probability
distributions in each parameter. Given that we are char-
acterizing clusters that have already been detected by
the MF, our position priors can be quite tight. We im-
pose a simple square-box prior on RA and Dec, centered

1 Mathworks Inc., Natick MA, 01760
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at the MF cluster location and extending ±1.25′. Our
∆T0 and θc priors restrict these parameters to broadly
reasonable values given the expected mass and redshift
range of our cluster sample. Our SZ temperature decre-
ment prior is −2.5 mK ≤ ∆T0 ≤ 0.0 mK, and our radius
prior is 0.025′ ≤ θc ≤ 2.5′. θc is not allowed to fall to
zero for numerical reasons.

Burn-in, as evaluated by stability of the likelihood val-
ues, is typically complete within several hundred steps.
For the 12,000 simulated cluster realizations in §5 we
cut the first 103 steps, using the rest of the 104 steps to
characterize the probability surface. In the scaling re-
lation analysis discussed in §6 many fewer clusters were
analyzed, allowing the chain length to be extended to
105 steps, from which we exclude the first 104 steps in
order to ensure convergence. We define recovered param-
eter values to be the median of the MCMC equilibrium
distribution for each parameter, marginalizing over the
other parameters. Uncertainties are given by the 68%
confidence interval of the marginalized distribution for
each parameter, centered on the median value. Figure
1 shows the parameter distributions for a typical cluster
detected with the SPT.

4. SIMULATIONS

4.1. Simulated Thermal SZ Cluster Maps

We used two sets of simulations; one uses β-model clus-
ters (defined by ∆T0 and θc) to investigate cluster pa-
rameter recovery (§5), while the second uses cluster gas
profiles inferred from dark matter light cone simulations
to calibrate YSZ-M scaling relations (§6). The second
set of simulations is described in detail in Shaw et al.
(2010), and will be referred to as the S10 simulations for
convenience. The thermal SZ (tSZ) cluster profiles used
in each set are discussed in more detail in the relevant
sections below.

4.2. Astrophysical Backgrounds

We use simulated maps of astrophysical backgrounds
that include contributions from the CMB and extragalac-
tic point sources. Simulated CMB anisotropies were gen-
erated based on realizations of the gravitationally lensed
WMAP 5-year ΛCDM CMB power spectrum.

The extragalactic point source population at 150 GHz
consists of two classes of objects: “dusty” sources dom-
inated by thermal dust emission from star formation
bursts, and “radio” sources dominated by synchrotron
emission. We use the source count model of Negrello
et al. (2007) at 350 GHz, which is based on physical
modeling by Granato et al. (2004) for dusty sources.
Source counts at 150 GHz are estimated by assuming the
flux densities scale as Sν ∝ να, where α = 3 for high-
redshift protospheroidal galaxies, and α = 2 for late-type
galaxies. For radio sources we use the De Zotti et al.
(2005) model at 150 GHz, which is in agreement with
observed radio source populations (Vieira et al. 2010;
Mocanu et al. 2013).

Point source population realizations were generated
by sampling from Poisson distributions for each popu-
lation in bins with fluxes from 0.01 mJy to 1000 mJy.
Sources were randomly distributed across the map. Cor-
relations between sources or with galaxy clusters were
not modeled, following V10. These 150 GHz simulated

point source populations were used for the scaling rela-
tion simulations of §6, but not for the multiband pipeline
checks of §5.

4.3. Simulated Observations

We model the SPT transfer function for the 95 GHz
and 150 GHz frequency bands by producing synthetic
timestreams from simulated maps convolved with the
SPT beam, observing them using the SPT scan strategy,
and convolving the resulting timestreams with detector
time constants. We produce maps by performing data
processing, as in §2.1, on the simulated timestreams. To
simplify the complex computational task of processing
large sky maps, the transfer function was modeled as a
2D Fourier filter. V10 shows that this approximation
introduces systematic errors in the recovered cluster ξ
values of less than 1%.

The instrumental and atmospheric noise in the SPT
maps were estimated by creating difference maps, which
were constructed to have no astrophysical signal. Each
field consists of several hundred individual observations.
We randomly multiply half of the observations by -1, and
then coadd the full set of observations. We repeat this
several hundred times, each time calculating the two-
dimensional spatial power spectrum, which we average
to estimate the instrumental and atmospheric noise in
the coadded SPT map. This averaged noise spectrum
is used to generate random map realizations of the SPT
noise, which are added to the simulated maps.

5. PIPELINE CHECKS

5.1. Cluster Model

We use mock observations of clusters in simulated sky
maps to evaluate the accuracy and bias of the recov-
ered cluster parameters. We begin with simulated maps
that contain the astrophysical signals described in Sec-
tion 4.2. To this we add mock clusters with an assumed
β-model profile, with known SZ decrements and radii,
at specified locations. Simulated SPT observations are
then performed on these maps. Three different cluster
core radii (0.25′, 0.5′, and 1.0′) are used, combined with
eight values for peak Comptonization between 175 µK
and 2 mK, spanning the range of values typically found
for SPT-detected clusters with ξ > 5. These cluster pro-
files are convolved with the SPT transfer function, and
then placed in the simulated maps. For each combina-
tion of β-model cluster parameters we create five pairs
of simulated maps (150 GHz and 95 GHz) by placing 100
copies of the cluster at random locations in five unique
noise maps. This results in 500 noise realizations for each
combination of cluster parameters, or 12,000 clusters to-
tal. As usual, ∼2◦ × 2◦ cutouts are made around each
cluster, and the MCMC is run on each patch.

In §5.2 and §5.3 we test parameter recovery in the
single-band (150 GHz) and multiband (95 GHz and 150
GHz) cases. In this paper, we do not use the 220 GHz
SPT measurements, because they are not deep enough to
make significant improvements to the CMB subtraction.

5.2. Position, Radius, and Amplitude

We first examine the recovered values of the four base-
line cluster parameters: the right ascension (RA) and
declination (Dec) position, ∆T0, and θc. The cluster po-
sitions are measured accurately, and we find no bias in
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Fig. 1.— From left to right the top row shows (1) a 25′ × 25′ section of an SPT sky map centered on cluster SPT-CL J2341-5119
(ξ = 9.65, z = 0.9983) (2) a close up of 7.5′ × 7.5′ centered on the cluster location, (3) a 2D histogram of the cluster position values from
the MCMC chain, marginalizing over ∆T0 and θc, and (4) a 2D histogram of ∆T0 and θc, marginalizing over position. Likewise the bottom
row shows one dimensional marginalized histograms of the parameters (5) Declination (6) Right Ascension, (7) ∆T0, and (8) θc. Vertical
red lines in the bottom row indicate the matched filter parameter values for this cluster.
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Fig. 2.— SPT-CL J0533-5005 (ξ = 5.59, z = 0.8810), an SPT
observed cluster with core radius θc < 1′. The left figure shows
a 2D histogram of the cluster position, and the right figure shows
∆T0 and θc. For clusters near the SPT beam size (∼1′ FWHM at
150 GHz) and selection threshold, the position is well constrained,
however the radius and amplitude are degenerate. Despite this,
the integrated Comptonization, YSZ, is well constrained. The over-
plotted curves are YSZ iso-curves. The dashed line is the recovered
YSZ for this cluster, while the dot-dashed lines are ±50% YSZ.

either position parameter. For clusters near the SPT
beam size (∼1′ FWHM at 150 GHz) and selection thresh-
old, the amplitude and shape of the cluster will not be
well constrained, however the integrated signal within
the SPT beam will be. A similar degeneracy has previ-
ously been noted in other cluster analyses (e.g., Benson
et al. 2004; Planck Collaboration et al. 2011, 2013). In
Figure 2, we show the recovered cluster parameters for a
typical cluster in the SPT catalog (SPT-CL J0533-5005,
ξ = 5.59, z = 0.8810, θc < 1.0′). While the position
is well-constrained, there is a significant degeneracy be-
tween the constraints on θc and ∆T0.

5.3. Integrated Comptonization

In general, the integrated Comptonization of a cluster
is calculated by integrating the source function, S(θ), out

to a given angular aperture θint:

YSZ = 2π

∫ θint

0

S(θ) θ dθ. (5)

For much of this work, θint will be a constant angular
aperture. We distinguish this estimator of YSZ from oth-
ers by referring to it as Y θSZ hereafter.

In the case of a two dimensional projection of a spher-
ical β-model with β = 1 (equation 2), this integral can
be solved analytically:

Y θSZ =
π∆T0θ

2
c

fxTCMB
Log

[
1 +

(
θint

θc

)2
]
, (6)

where θc is the core radius in arcminutes, ∆T0 is the cen-
tral temperature decrement in units of KCMB, the equiv-
alent CMB temperature fluctuation required to produce
the observed power fluctuation, TCMB is the CMB black-
body temperture of 2.725 K, and fx is given by:

fx =

(
x
ex + 1

ex − 1
− 4

)
[1 + δ(x, Te)] , (7)

where x = hν/kTCMB, and δ(x, Te) accounts for rela-
tivistic corrections to the SZ spectrum (Itoh et al. 1998;
Nozawa et al. 2000). For the details of the calculation of
fx for the SPT see A11.

We use this equation to calculate Y θSZ for every step
in the MCMC chain, and thus to produce a marginal-
ized distribution of Y θSZ values. In these simulations,
integration to a radius approximately corresponding to
the 150 GHz SPT beam diameter (roughly the range
0.75′ < θint < 1.25′) produces Y θSZ distributions that
are well constrained despite the degeneracy of θc and
∆T0, with minimal error in recovered cluster Y θSZ values.
Integration in this section is performed to θint = 0.75′,
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Fig. 3.— The marginalized constraints on YSZ and θc from 500
noise realizations of a typical simulated cluster with radius smaller
than the SPT 150 GHz beam (θc = 0.5′, ∆T0 = 300µK, ξ = 6.2).
The contours show the 68% and 95% confidence regions. The ‘X’

marks the input θc and YSZ values (Y 0.75′
SZ = 1.20×10−4 arcmin.2).

Despite only having an upper bound on θc, YSZ is well constrained.

though other values are explored for scaling relations in
§6 below. Note that we calculate Y θSZ from the marginal-
ized distribution of the source model parameters, not by
integrating the flux on the sky.

If the redshift of a cluster is known it is also possible to
integrate YSZ within an angular aperture corresponding
to a specific physical radius, ρ:

θint = ρ D−1
A (z),

where DA(z) is the angular diameter distance to the red-
shift z. In Sections 6 and 7, we examine YSZ integrated
within a constant physical radius, ρ, for all clusters in a
sample. We will refer to this quantity as as Y ρSZ.

In Figure 2 we show a typical SPT cluster in which Y θSZ
is well constrained despite the degeneracy between ∆T0

and θc. Figure 3 shows YSZ and θc parameter distribu-
tions for 500 runs of a typical simulated cluster with a ra-
dius smaller than the SPT 150 GHz beam size (θc = 0.5′,
∆T0 = 300µK, ξ = 6.2). The cutoff at low θc is due
to the small, but non-zero, minimum priors on θc and
∆T0, this is not a feature of the data likelihood. De-
spite only having an upper bound on θc, YSZ is still well
constrained.

In Figure 4, we show the ratio of the recovered to input
YSZ as a function of core radius and cluster detection sig-
nificance, ξ, for 24 different combinations of θc and ∆T0,
each with 500 independent noise realizations. Despite a
slight apparent bias for some θc values, we find no signif-
icant bias as a function of the detection significance, and
recover Ysz accurately to < 2% in all cases. On average
recovered Y θSZ values are 0.27% lower than input values,
which is below the 0.49% error in the mean.

6. SCALING RELATIONS FROM SIMULATED
CLUSTERS

In this section, we compare YSZ and ζ as SZ observ-
ables for the SPT-SZ survey, focusing on their scatter
with cluster mass. To do this, we use maps derived from
the S10 simulations, which are intended to provide more
realistic cluster profiles than the β-model clusters used
in §5.
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Fig. 4.— Average ratios of recovered to input YSZ for 24 different
combinations of θc and ∆T0. Each point is the mean recovered YSZ
for a simulated cluster with 500 independent noise realizations.
The errorbars represent the error on the mean of these recovered
YSZ values.

The steepness of the galaxy cluster mass function will
introduce bias in a scaling relation fitted in the presence
of noise or intrinsic scatter in the population. There-
fore, in §6.3 we fit Y θSZ-M scaling relations for clusters in
simulated tSZ-only maps, to minimize the selection bias.
These maps contain none of the celestial or instrumental
noise spectra described in §4 (CMB, point sources, at-
mospheric noise, and instrumental noise), only tSZ sig-
nal. In §6.4 we fit for a Y θSZ-M scaling relation using
clusters in S10 simulation maps containing the full as-
trophysical and instrumental noise terms to evaluate the
performance of the MCMC in the presence of noise.

6.1. Simulated Clusters

The S10 simulations are based on a dark matter light-
cone simulation, with cosmological parameters consistent
with the WMAP 5-year data and large-scale structure
measurements (Dunkley et al. 2009). To include baryons
in the simulations, Shaw et al. (2010) apply the semi-
analytic gas model of Bode et al. (2007), specifically their
fiducial model, to the dark matter halos identified in the
output of the lightcone simulation. From the simula-
tions, we construct two dimensional SZ intensity maps at
150 GHz of clusters with virial mass (Mvir) greater than
5×1013M�h

−1 by summing the electron pressure density
along the line of sight. The resulting maps are projec-
tions of all the clusters in the lightcone simulation onto
a simulated sky. Forty 10◦×10◦ maps were produced by
this procedure, together with catalogs of cluster masses,
redshifts, and positions.

6.2. YSZ-M Scaling Relation Fitting Methods

We assume a scaling between YSZ and M of the form:

YSZ = ASZ

(
Mvir

3× 1014M�h−1

)BSZ
(
E(z)

E(0.6)

)CSZ

, (8)

parametrized by the normalization ASZ, the mass scal-
ing BSZ, and the redshift evolution CSZ, and where
E(z) ≡ H(z)/H0. For self-similar evolution, BSZ = 5/3
and CSZ = 2/3 (e.g., Kravtsov et al. (2006)). The pivot
points of the scaling relation were defined to match the
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approximate mean mass and redshift for the SPT cluster
sample.

We fit the Y θSZ-Mvir scaling relation by minimizing the
fractional scatter, S, in Y θSZ, defined as:

S =

√√√√ 1

N

N∑
n=1

(
Y recov
n − Y input

n

Y input
n

)2

, (9)

where Y recov
n is the integrated Comptonization recovered

by the MCMC for the nth cluster, Y input
n is the corre-

sponding Comptonization calculated from the input cat-
alog mass and the assumed scaling relation (equation 8),
and we sum over N simulated clusters. The scaling re-
lation parameters ASZ, BSZ, and CSZ are varied using a
grid search method, and the scatter S is calculated at
each point in the parameter space. The combination of
parameters that minimizes S is taken to be the best-fit
set of parameters. This definition of fractional scatter is
used to fit Y θSZ-Mvir scaling relations in §6.3 and in §6.4.

6.3. Results for Simulated Thermal-SZ-Only Maps

We run both the MCMC and MF methods on tSZ-only
maps from the S10 dark matter lightcone simulations de-
scribed in §6.1. These simulated tSZ maps contain only
thermal SZ signal, and no CMB, point sources, atmo-
spheric noise, or instrumental noise.

We measure the SZ signal in these maps using the
methods described in Sections 5.1 and 5.3 for clusters
with Mvir > 4× 1014M�h

−1, and redshift 0.3 < z < 1.2.
We then use the cluster virial masses and equation 8 to
find the best fit scaling relation parameters by minimiz-
ing the fractional scatter in equation 9. We do this for
both the YSZ-Mvir and ζ-Mvir scaling relations, which
allows for direct comparison of these analysis methods.
The redshift range corresponds to the redshift range of
observed SPT clusters, and the mass criteria corresponds
to the mass of clusters at the lower SPT significance limit
of the Reichardt et al. (2013) cluster catalog (ξ = 4.5),
at the survey median redshift of z = 0.6.

As a baseline for the scatter in the measured YSZ-Mvir

scaling relations for these simulations, we examine the
intrinsic scatter between Mvir and Yvir, the contribution
to the SZ flux from within the spherical virial radius for
each cluster. We fit the Yvir-Mvir scaling relation param-
eters using the same method as for measured YSZ values,
and find the fractional scatter in the best-fit scaling re-
lation to be 16%.

We fit Y θSZ-Mvir relations for a range of angular aper-
tures, θ, with Y θSZ defined in equation 6. Figure 5 shows
the fractional scatter as a function of the integration an-
gle for angles ranging from 0.25′ to 3.0′. We find that the
fractional scatter in Y θSZ does not vary significantly with
angular aperture, with a broad minimum in the scatter
at ∼0.75′ - 1.0′ (Y 0.75′

SZ ). The exact location of the min-
imum scatter shifts between the tSZ-only maps and the
full-noise S10 maps, but is near 0.75′ in both cases (see
Figure 5). For simplicity, and for comparison between
the different simulated maps and observed clusters, we
use the Y 0.75′

SZ -Mvir scaling relation as our nominal scal-

ing relation. The Y 0.75′

SZ -Mvir scaling relation has 23±2%
fractional scatter in YSZ, which is slightly less than the
27 ± 2% scatter in the ζ-Mvir scaling relation for these

clusters. The scatter in the tSZ-only simulations is pri-
marily due to the intrinsic scatter in the mass to SZ ob-
servable scaling, scatter from the tSZ background is sub-
dominant. (Note, the scatter here is fractional scatter,
whereas previous SPT analyses in V10 and B13 quoted a
log-normal scatter, at a level consistent with the values
found in this work.)

Figure 6 shows Y 0.75′

SZ versus Mvir for the 1187 clusters
examined from this simulation. The solid line is the best-
fit Y 0.75′

SZ -Mvir scaling relation found for these clusters.
The scaling relation parameters (ASZ, BSZ, CSZ, and S)

for the Y 0.75′

SZ scaling relation are given in Table 1.
We also calculate YSZ within a constant physical ra-

dius, ρ, (Y ρSZ) for all the clusters in the catalog. The
angular size of a cluster is a function of its redshift, there-
fore, it is interesting to measure YSZ within a fixed phys-
ical radius. In Figure 5, we plot the best-fit scatter for
a range of integration radii between 0.1 to 1.0 Mpc. We
find that the minimum fractional scatter in YSZ within
a fixed physical radius is higher than the minimum frac-
tional scatter within a fixed angular aperture. For Y ρSZ,
the scatter is increased by the varying angular size of the
chosen physical radius at different redshifts. The optimal
physical radius corresponds roughly to the optimal angu-
lar aperture, at the median redshift of the cluster sample,
z = 0.6. Clusters farther from the median redshift will
have integration angles farther from the optimal angle,
resulting in relatively higher scatter in Y ρSZ than in Y θSZ.

As can be seen in Figure 5, we find a broad minimum
in scatter at ∼0.3 - 0.4 Mpc, with a minimum scatter
of 27 ± 3%. This is comparable to the ζ-Mvir relation
for these clusters, and slightly higher than the scatter
in the Y 0.75′

SZ -Mvir scaling relation. The scaling relation

parameters for YSZ within 0.3 Mpc (Y 0.3Mpc
SZ ), (0.3 Mpc

being equivalent to 0.75′ at z = 0.6) are given in Table 1.

6.4. Results for Full-Noise Simulated Maps

We also fit Y θSZ-Mvir scaling relations for the sim-
ulated clusters in the presence of other astrophysical
and instrumental noise components (see §4.2 and §4.3).
The same cluster sample (Mvir > 4 × 1014M�h

−1, and
0.3 < z < 1.2) was analyzed in this set of simulations as
in the simulated tSZ-only maps. We will refer to this set
of simulations as the full-noise S10 simulated maps.

The scaling relation fitting for the clusters from this
set of simulations was performed as in §6.3. As in §6.3,
the scatter is a weak function of angular aperture, with
the minimum shifted to ∼0.5′ - 0.75′. Figure 5 shows
the fractional scatter as a function of angular aperture
of integration.

For the Y 0.75′

SZ -Mvir scaling relation we find a fractional
scatter in YSZ of 27±1%. Since the scatter here includes
both intrinsic scatter and the measurement uncertainty,
we expect it to be larger than the scatter in Y 0.75′

SZ in
§6.3. This level of scatter is comparable to the 27 ± 2%
scatter in ζ found in the ζ-Mvir scaling relation for these
simulations.

Figure 7 shows Y 0.75′

SZ versus Mvir for the 1187 clus-
ters analyzed from the full-noise S10 simulated maps.
The solid line is the best-fit Y 0.75′

SZ -Mvir scaling relation
found for this cluster sample. The mass scaling relation
parameters for Y 0.75′

SZ in this set of simulations are given
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Fig. 5.— Fractional scatter vs. integration radius for tSZ-only and full noise simulations. Left panel: fractional scatter vs. integration
angle in arcminutes. Right panel: fractional scatter vs. integration radius in megaparsecs. The scatter in the tSZ-only simulations is
essentially the intrinsic scatter in the population, since only tSZ fluctuations are present. Adding the other noise terms shifts the scatter
up, and the minimum down in angular or physical scale because those noise terms dominate at large angles. The optimal angular apertures
correspond roughly to the optimal physical radii at the median redshift of the cluster sample, z = 0.6.
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Fig. 6.— Y 0.75′
SZ versus Mvir for 1187 mass-selected clusters in

the S10 simulated tSZ-only maps, where we only include clusters
with Mvir > 4 × 1014M�h−1 in the redshift range 0.3 < z < 1.2.
Fractional scatter in YSZ is 23 ± 2%. The solid line is the best-fit

Y 0.75′
SZ -Mvir scaling relation found for this cluster sample.

in Table 1.
Using these simulations we also calculate Y ρSZ for a

range of ρ values, as in §6.3, and fit Y ρSZ-Mvir scaling
relations for each ρ. Figure 5 shows the fractional scat-
ter as a function of the integration radius for a range
of physical radii. We find a broad minimum in scatter
at ∼0.2 - 0.3 Mpc, with a minimum scatter of 33 ± 2%.
The optimal integration radius shifts down here relative
to the simulated tSZ-only maps because of the scale de-
pendence of the noise sources added in the full-noise S10
maps, which dominate the scatter in these simulations.
In particular, the noise induced by the simulated CMB
increases with angular scale, leading to a preference for
smaller integration radii. The scatter in Y ρSZ for these
simulations is slightly higher than the scatter in both
the ζ and the Y 0.75′

SZ mass scaling relations. The scaling

relation parameters for the nominal Y 0.3Mpc
SZ mass scal-
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Fig. 7.— Y 0.75′
SZ versus Mvir for 1187 mass-selected clusters in

the full-noise S10 simulations, which include CMB, point sources,
astrophysical noise, and realistic SPT instrument noise. We include
only clusters with Mvir > 4 × 1014M�h−1 in the redshift range
0.3 < z < 1.2. Fractional scatter in YSZ is 27 ± 1%. The solid line

is the best-fit Y 0.75′
SZ -Mvir scaling relation found for this cluster

sample.

ing relation are given in Table 1. The optimal physical
radius again corresponds roughly to the optimal angular
aperture, at the median redshift of the cluster sample.

7. YSZ FOR SPT OBSERVED CLUSTERS

7.1. YSZ-M500 Scaling Relation Fitting Methods

In this section we perform Y θSZ-M scaling relation fit-
ting for a sample of SPT observed clusters, using the
same scaling relation as in the simulations (equation 8)
and the X-ray determined cluster masses. In this section
we define cluster mass as M500, the mass inside a spher-
ical radius r500, within which the average density is 500
times the critical density of the universe at the cluster’s
redshift. To fit this scaling relation with clusters selected
in the SPT-SZ survey, we have to account for the shape
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of the cluster mass function and the SPT survey selec-
tion, which was based on the SPT significance, ξ. This is
similar to the procedure followed in previous SPT anal-
yses (Reichardt et al. 2013, B13, V10), with the added
complication that in this work we must express the SPT
selection function in YSZ instead of ξ.

The (unnormalized) probability of a mass M given an
integrated Comptonization YSZ is given by:

P(M |YSZ) = P(YSZ|M)P(M),

where P(YSZ|M) is the Gaussian probability distribution
with which we have been working previously, and P(M)
is the mass function. The number of clusters is a steep
function of cluster mass, which (combined with the mea-
suremtent uncertainty in YSZ) results in relatively more
low-mass than high-mass clusters at a given YSZ, an ef-
fect commonly referred to as Eddington bias.

For our cluster sample we use the eighteen clusters
from B13, fourteen of which have X-ray derived masses
(see §2.3), and all of which have ξ > 5. For this anal-
ysis we use only the 150 GHz data, the SPT band with
the highest SZ sensitivity. For a list of cluster names, ξ
values, and redshifts for this sample, see Table 2.

To fit for scaling relations we use a method similar
to the one described in B13, which we modify to ac-
count for the cluster selection based on YSZ instead of
ζ. In B13, we used a version of the CosmoMC (Lewis
& Bridle 2002) analysis package, modified to include the
cluster abundance likelihood in the CosmoMC likelihood
calculation. All fitting is performed assuming a stan-
dard flat ΛCDM cosmology, and using the WMAP 7-
year data set. At each step in the chain, a point in the
joint cosmological and scaling relation parameter space
is selected. The Code for Anisotropies in the Microwave
Background (CAMB) (Lewis et al. 2000) is used to com-
pute the matter power spectrum at twenty redshift bins
between 0 < z < 2.5, spaced logarithmically in 1 + z.
The matter power spectrum, cosmological parameters,
and YSZ-M500 and YX-M500 scaling relation parameters
are then input to the cluster likelihood function. YX is
defined as the integrated X-ray flux within r500.

To calculate the cluster likelihood, first the matter
power spectrum and cosmological parameters are used
to calculate the cluster mass function, based on Tinker
et al. (2008). Next, the mass function is converted to
the predicted cluster abundance in our observable space,
N(YSZ, YX, z). This conversion is accomplished using our
standard Y θSZ-M500 scaling relation (equation 8), and the
YX-M500 scaling relation from B13:

M500
X

1014M�h−1
=
(
AXh

3/2
)( YX

3× 1014M� keV

)BX

E(z)CX ,

(10)
parametrized by the normalization factor AX, the mass
scaling BX, the redshift evolution CX, and the log-normal
intrinsic scatter. This scaling relation is based on the
relation used in Vikhlinin et al. (2009a).

The predicted cluster density as a function of YSZ, YX,
and z can be written as follows:

dN(YSZ, YX, z|~p)
dYSZ dYX dz

=∫
P (YSZ, YX|M, z, ~p) P (M, z|~p) Φ(YSZ) dM, (11)

where ~p is the set of cosmological and scaling relation
parameters, and Φ(YSZ) is the selection function in YSZ.
This predicted cluster density function differs from B13
in that the selection function must be transformed from
a Heaviside step function at ξ = 5 into a function of
YSZ. We assume that YSZ and ξ can be related with
a log-normal distributed scaling relation, and that the
selection in B13 can therefore be well-approximated by
an error-function in YSZ. We then define our selection
function as:

Φ(YSZ) =
1

2
erf

(
YSZ − Y φSZ(z)
√

2 Y φSZ(z) D

)
+

1

2
, (12)

where the selection threshold, Y φSZ(z) is defined as the
YSZ value corresponding to ξ = 5 at the redshift z. We

estimate Y φSZ(z) by fitting a YSZ-ξ scaling relation of the
form:

YSZ = AξBE(z)C , (13)

using the catalog of SPT observed clusters given in R13.
The width of the selection error-function is given by the
scatter in the YSZ-ξ scaling relation, D.

We evaluate equation 11 on a 200 × 200 × 30 grid in
(YSZ, YX, z) space, and convolve with a Gaussian error
term in YSZ to account for the measurement noise. The
width of the Gaussian is given by the uncertainty in YSZ

as a function of YSZ, δYSZ(YSZ), as determined by the
cluster parametrization MCMC (see §5.3).

The likelihood function of the observed cluster sample
is defined by the Poisson probability:

Log (L(~p)) =
∑
i

Log

(
dN(YSZi, YXi, zi, |~p)

dYSZ dYX dz

)
−∫

dN(YSZ, YX, z, |~p)
dYSZ dYX dz

dYSZ dYX dz, (14)

where the summation is over the SPT clusters in our
catalog. Note also that this is the unnormalized log-
likelihood.

There is a complication, in that YX is dependent on
the cosmological parameters. YX ≡ Mg TX, where Mg

is the gas mass within r500, and TX is the core-excised
X-ray temperature in an annulus between 0.15×r500 and
1.0×r500. To maintain consistency with the cosmological
parameters, we recalculate YX for each cluster at every
step in CosmoMC, given the current YX-M500 relation
and r500. In the likelihood, we add

∑
i Log(YXi) to the

right hand side of equation 14 to account for the recalcu-
lation of YX. For a detailed explanation of this correction
term, see Appendix B of B13.

To account for measurement error in YX and z for
each cluster, we marginalize over the relevant parame-
ter, weighted by a Gaussian likelihood determined by its
uncertainty. For the few clusters without observed YX

data, we instead weight the marginalized parameter by a
uniform distribution over the allowed parameter range.

The likelihood of this set of cosmological and scaling
relation parameters is then used by CosmoMC in the
acceptance/rejection computation. Only the Y θSZ-M500

scaling relation parameters are of interest to us in this
analysis. The cosmological and YX-M500 scaling relation
parameters were used as a crosscheck to verify that the
results were in agreement with the analysis performed on
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these clusters in B13, but will not be presented here. All
parameters differed from the values presented in B13 by
<< 1σ.

7.2. YSZ-M500 Scaling Relation Results

We use CosmoMC to fit Y θSZ-M500 scaling relations for
a range of angular apertures, and find a broad minimum
in scatter in the range 0.5′ - 0.75′, with a minimum in-
trinsic log-normal scatter of 21 ± 11%. No priors are
placed on these scaling relation parameters. The scatter
in the ζ-M500 scaling relation for these clusters is com-
parable, at 21± 9%. The scaling relation parameters for
the Y 0.75′

SZ -M500 scaling relation are given in Table 1.
We also fit mass scaling relations for Y ρSZ integrated

within a range of physical radii, ρ, from 0.1 Mpc to 0.5
Mpc. We find a broad minimum in scatter in the range
0.2 - 0.3 Mpc, with a minimum intrinsic log-normal scat-
ter of 23±5%. This is comparable to the scatter in both
the ζ and Y 0.75′

SZ mass scaling relations. The parame-

ters for the nominal Y 0.3Mpc
SZ mass scaling relation (0.3

Mpc corresponds to 0.75′ at the survey median redshift
of z = 0.6) are listed in Table 1.

7.3. Cluster Masses

To calculate the masses of the clusters, the Y 0.75′

SZ Cos-
moMC chains were used. The probability density func-
tion for the mass was computed on a grid for each step
in the CosmoMC chains. These probability density func-
tions were then combined to obtain a mass estimate fully
marginalized over all scaling relation and cosmological
parameters. This was done for CosmoMC chains con-
taining only Y 0.75′

SZ data, and no YX data, and vice versa,
to obtain mass estimates based on only the SZ and X-ray
data respectively. The cluster M500 masses derived from
the Y 0.75′

SZ and YX data (M500
SZ and M500

X respectively)
can be found in Table 2, along with the corresponding
Y 0.75′

SZ and YX values. Y 0.75′

SZ values are given in M�keV
for ease of comparison with YX.

Figure 8 shows the cluster masses calculated from the
YSZ-M500 scaling relation versus the masses calculated
from the YX-M500 scaling relation for the B13 cluster
sample. The solid line is the reference line M500

SZ = M500
X .

7.4. YSZ(r500)

The self-similar model of cluster formation assumes
that clusters scale in well-defined ways based on their
mass, typically defined within physical radii proportional
to the critical density of the universe at the cluster’s red-
shift (e.g., Kravtsov & Borgani (2012)). For this reason,
studies of the scaling relations of clusters typically mea-
sure physical observables defined by this physical radius,
usually r500. In this section, we will calculate YSZ(r500),
denoted Y 500

SZ , for comparison with other published pa-
rameters for the clusters in B13.

We investigated a method for estimating r500 from SZ
data, as a way to measure Y 500

SZ solely from SZ data. This
method proved to be problematic however, because it
required estimating M500 from a fixed angular aperture,
and calculating r500 from that estimate. This results
in the scatter in the Y 0.75′

SZ -M500 scaling relation feeding
back into the calculation of Y 500

SZ . Instead, we use the
X-ray determined r500 in our calculations of Y 500

SZ .
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Fig. 8.— Masses computed from Y 0.75′
SZ for the 14 SPT observed

clusters in Table 2 versus corresponding M500
X values. For reference

we overplot the relation M500
SZ = M500

X .

In Table 2, we give the measured Y 500
SZ values for our

cluster sample. We note that, as defined in equation 5,
the MCMC fits for a cylindrically projected measure of
Y 500

SZ rather than the spherical de-projected value often
used in other YSZ-M scaling relation results (e.g., A11,
Arnaud et al. (2010)). Y 500

SZ values are given in M�keV
here, for comparison with A11.

A11 describes a template fitting method of estimat-
ing Y 500

SZ , which uses an SZ source template motivated
from X-ray measurements of each cluster. The profile is
assumed to match the product of the best-fit gas den-
sity profile to the X-ray measurements of each cluster,
and the universal temperature profile of Vikhlinin et al.
(2006). These profiles are multiplied together to produce
the radial pressure profile, and projected onto the sky us-
ing a line-of-sight integral through the cluster. A11 then
constructs a spatial filter using equation 1, and this X-
ray derived source model. The X-ray determined cluster
position is used to place priors on the cluster location to
prevent maximization bias in the recovered Y 500

SZ values.
Y 500

SZ is calculated by integrating the source model over
a solid angle corresponding to r500, as in equation 5.

In Figure 9, we plot the Y 500
SZ estimated by the MCMC

method against the Y 500
SZ estimated by the template fit-

ting method in A11. The best-fit relation between the
two is Y 500

SZ (MCMC) = (0.98 ± 0.09) Y 500
SZ (MF), where

the uncertainty is the range for which ∆χ2 < 1 compared
to the best-fit. We see that these two methods of calcu-
lating Y 500

SZ are consistent, that is, the best-fit scaling re-
lation is consistent with equality between Y 500

SZ (MCMC)
and Y 500

SZ (A11). The scatter about the expected one-to-
one line here is dominated by differences in cluster model
shape between the two methods (X-ray derived SZ profile
versus β-model).

We also verify that our Y 500
SZ values for these clusters

are in agreement with the YX values presented in B13,
given the expected YSZ-YX scaling. Figure 10 shows the
Y 500

SZ values of our catalog of SPT observed clusters plot-
ted against their YX values from B13.

We can make a prediction of the relationship between
YSZ and YX based on the universal pressure profile from
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TABLE 1
YSZ-M Scaling Relation Parameters

MCMC MF

Data Set Integration ASZ BSZ CSZ Scatter Scatter
Radius (×10−4)

tSZ-Only S10 Sims
0.75′ 1.44 ± 0.11 1.20 ± 0.11 1.63 ± 0.24 23 ± 2%

27 ± 2%
0.3 Mpc 1.53 ± 0.16 1.26 ± 0.17 1.13 ± 0.13 28 ± 2%

Full-Noise S10 Sims
0.75′ 1.37 ± 0.10 1.04 ± 0.11 1.02 ± 0.20 27 ± 1%

27 ± 2%
0.3 Mpc 1.49 ± 0.18 1.12 ± 0.22 0.53 ± 0.25 34 ± 2%

B13 SPT Observed Clusters
0.75′ 1.85 ± 0.36 1.77 ± 0.35 0.96 ± 0.50 21 ± 11%a

21 ± 9%a

0.3 Mpc 2.09 ± 0.35 1.43 ± 0.20 0.35 ± 0.28 26 ± 9%a

Note. — The tSZ-only maps contain only thermal SZ signal, while the full-noise S10 maps include tSZ, CMB, point sources, atmospheric
noise, and realistic SPT instrumental noise. The values of scatter reported for the simulations are fractional scatter, while the values reported
for the B13 clusters are intrinsic log-normal scatter. For comparison with the scatter in each YSZ-M scaling relation we list the scatter in
the corresponding MF derived ζ-M scaling relation for the same data set.

aThese values are intrinsic log-normal scatter.
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Fig. 9.— Y 500
SZ for the 14 SPT clusters from Table 2 cal-

culated by the MCMC method described here, and by the MF
method of Andersson et al. (2011). We also show the reference
line Y 500

SZ (MCMC) = Y 500
SZ (A11) (solid), the best-fit line (green

dashed), and the uncertainty in the fit defined as the range for
which ∆χ2 < 1 compared to the best-fit (red dot-dashed). The
best-fit normalization is A = 0.98 ± 0.09, demonstrating that the
scaling relation is consistent with equality between Y 500

SZ (MCMC)

and Y 500
SZ (A11).

Arnaud et al. (2010), based on X-ray measurements of
a representative sample of local, massive clusters. Even
though YSZ and YX are effectively measures of the cluster
pressure, they depend on the details of the shape of the
profile differently, which can still vary somewhat between
clusters. Assuming the Arnaud et al. (2010) pressure pro-
file, we predict a relationship of Y 500

SZ = 1.08 YX, where
Y 500

SZ is integrated within a fixed angular aperture corre-
sponding to r500 (often called a cylindrical projection).
In Figure 10, we plot the YSZ estimated by the MCMC
method against the YX measured in B13. We fit a scaling
relation of the form Y 500

SZ = A YX, and find that the best-
fit normalization is A = 1.17± 0.12, consistent with the
expected normalization. This fit has a total χ2 of 19.46
for 14 degrees of freedom, with a probability to exceed
of P = 0.15. The uncertainty in the normalization is the
range for which ∆χ2 < 1 compared to the best-fit.

8. CONCLUSIONS
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Fig. 10.— Y 500
SZ (MCMC) versus YX for the 14 SPT clusters

from Table 2. We also show the expected scaling relation from
Arnaud et al. (2010): Y 500

SZ = 1.08 YX (solid), the best-fit line
(green dashed), and the uncertainty in the fit defined as the range
for which ∆χ2 < 1 compared to the best-fit (red dot-dashed).
The best-fit normalization is A = 1.17 ± 0.12, consistent with the
expected scaling between Y 500

SZ and YX.

We describe and implement a method of constraining
YSZ generalizable to any cluster profile, and we show that
this method accurately recovers YSZ in simulations. We
compare YSZ to SPT cluster detection significance, focus-
ing on scatter with mass. Finally, we apply this method
to clusters detected in the SPT-SZ survey, and compare
the estimated YSZ values to YSZ estimated by a template
fitting method, and to YX.

We apply our method to clusters in simulated tSZ-only
maps and measure Y θSZ, the integrated Comptonization
within a constant angular aperture. We find that YSZ is
measured with the lowest fractional scatter in an aper-
ture comparable to the SPT beam size (∼1′ FWHM at
150 GHz). We fit Y θSZ-Mvir scaling relations for a range of
angular apertures and find a minimum fractional scatter
of 23 ± 2% in YSZ, at a fixed mass, with the minimum
occurring for an angular aperture of 0.75′. We also cal-
culate YSZ within a range of physical radii, ρ, and find a
minimum scatter in Y ρSZ at an integration radius of 0.3
Mpc, which corresponds roughly to 0.75′ at the survey
median redshift (z = 0.6), with a fractional scatter of
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TABLE 2
SPT Cluster Fluxes and Masses

Object Name z Y 0.75′
SZ Y 500

SZ YX M500
SZ M500

X
(1014M�keV) (1014M�keV) (1014M�keV) (1014M�h

−1
70 ) (1014M�h

−1
70 )

SPT-CL J0509-5342 0.463 0.9 ± 0.1 3.6+1.4
−1.1 4.3 ± 0.8 4.32 ± 1.11 5.11 ± 0.75

SPT-CL J0511-5154a 0.74 1.2 ± 0.2 − − 2.79 ± 1.43 −
SPT-CL J0521-5104a 0.72 1.1 ± 0.2 − − 2.46 ± 1.32 −
SPT-CL J0528-5259 0.765 1.1 ± 0.2 1.8+0.8

−0.5 1.6 ± 0.5 2.21 ± 1.14 2.54 ± 0.54

SPT-CL J0533-5005 0.881 1.4 ± 0.2 2.1+0.6
−0.4 1.0 ± 0.4 2.75 ± 1.39 1.86 ± 0.43

SPT-CL J0539-5744a 0.77 1.0 ± 0.2 − − 1.93 ± 0.93 −
SPT-CL J0546-5345 1.067 2.0 ± 0.3 5.0+1.1

−1.0 4.8 ± 0.8 4.18 ± 0.89 4.79 ± 0.86

SPT-CL J0551-5709 0.423 0.7 ± 0.1 3.4+1.7
−1.2 1.9 ± 0.4 3.57 ± 1.43 3.32 ± 0.46

SPT-CL J0559-5249 0.611 1.6 ± 0.2 9.0+2.1
−1.8 6.4 ± 0.8 5.46 ± 1.04 6.29 ± 0.86

SPT-CL J2301-5546a 0.748 1.0 ± 0.2 − − 1.89 ± 0.89 −
SPT-CL J2331-5051 0.571 1.4 ± 0.2 2.3+0.4

−0.3 3.5 ± 0.6 5.29 ± 1.00 4.50 ± 0.64

SPT-CL J2332-5358 0.403 0.9+0.2
−0.1 8.7+3.7

−3.1 6.1 ± 0.8 5.25 ± 1.04 6.39 ± 0.75

SPT-CL J2337-5942 0.781 3.1 ± 0.2 7.8+1.3
−1.4 8.5 ± 1.7 6.67 ± 1.29 6.82 ± 1.11

SPT-CL J2341-5119 0.998 2.3 ± 0.2 6.8 ± 1.1 4.7 ± 1.0 4.86 ± 0.93 4.64 ± 0.86
SPT-CL J2342-5411 1.074 1.5 ± 0.3 2.6 ± 0.6 1.4 ± 0.3 2.46 ± 1.32 2.36 ± 0.43

SPT-CL J2355-5056 0.320 0.4 ± 0.1 2.1+0.9
−0.7 2.2 ± 0.4 3.11 ± 1.61 3.75 ± 0.46

SPT-CL J2359-5009 0.774 1.4 ± 0.2 4.5+1.3
−1.1 1.8 ± 0.4 3.61 ± 1.11 2.86 ± 0.50

SPT-CL J0000-5748 0.701 1.1 ± 0.2 2.1+1.1
−0.6 4.2 ± 1.6 2.57 ± 1.36 4.14 ± 0.93

Note. — Cluster redshifts and X-ray fluxes are quoted from Benson et al. (2013). Y 0.75′
SZ is the integrated Comptonization within 0.75′,

calculated with our YSZ MCMC method. Y 500
SZ is the integrated Comptonization within r500. Y 0.75′

SZ and Y 500
SZ values are given in M�keV

for comparison to YX and the YSZ values from A11. Y 0.75′
SZ and Y 500

SZ are cylindrically projected. M500
SZ and M500

X are estimates of M500

calculated from the same CosmoMC chains, using only the Y 0.75′
SZ and YX data respectively.

aThese clusters have only SZ data, and no X-ray observations.

28± 2% at a fixed mass. Using the same simulated clus-
ters, we also fit a ζ-Mvir relation, where ζ is the matched
filter SZ detection significance measured by SPT, and
find a fractional scatter of 27± 2%.

We also analyze clusters in simulations including tSZ,
CMB, point sources, atmospheric noise, and realistic
SPT instrumental noise. In these full-noise simulations,
the Y 0.75′

SZ -Mvir scaling relation has 27± 1% scatter, the

Y 0.3Mpc
SZ -Mvir scaling relation has 34 ± 2% scatter, and
ζ-Mvir scaling relation has 27± 2% scatter. These simu-
lations demonstrate that scatter in Y θSZ is comparable to
the scatter in ζ.

To investigate YSZ scaling relations in SPT observed
clusters, we fit Y θSZ-M500 and Y ρSZ-M500 scaling relations
to the sample of eighteen SPT clusters described and
examined in Benson et al. (2013). Of these, fourteen
have X-ray observations and measured YX values, which
we use to estimate the cluster M500 masses. We fit the
scaling relations using a version of CosmoMC, similar to
the one described in Benson et al. (2013), modified to
account for the cluster selection based on YSZ instead
of SPT significance. For these clusters, the Y 0.75′

SZ -M500

scaling relation is found to have 21 ± 11% intrinsic log-

normal scatter in YSZ at a fixed mass, the Y 0.3Mpc
SZ -M500

scaling relation has 26± 9% scatter, and the ζ-M500 re-
lation has 21± 9% scatter.

We also calculate a cylindrically projected Y 500
SZ , the

integrated Comptonization within r500, for the clusters
in the Benson et al. (2013) sample. We compare the
Y 500

SZ values recovered by our Markov-Chain Monte Carlo
method to those calculated for the same clusters by the
template fitting method described in A11 and find the
two methods to be consistent. We further compare the

MCMC derived Y 500
SZ values to the YX values for these

clusters from Benson et al. (2013) and find that they are
consistent with the expected scaling between YSZ and YX,
based on the universal pressure profile of Arnaud et al.
(2010).

We have demonstrated, with both simulations with re-
alistic SPT noise and SPT observed clusters, that YSZ

is most accurately determined in an aperture compara-
ble to the SPT beam size. We have used this informa-
tion in measuring YSZ for the catalog of clusters observed
with the SPT in the 2008 and 2009 seasons (Reichardt
et al. 2013). The SPT-SZ survey of 2500 deg2 was com-
pleted in November 2011, and has detected ∼500 clus-
ters with a median redshift of ∼0.5 and a median mass
of M500 ∼ 2.3 × 1014M�h

−1. The methods and results
presented here will inform the measurement and use of
YSZ for the clusters detected in the full SPT-SZ survey.
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